МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования Красноярского края Администрация Уярского района МБОУ "Авдинская СОШ"

РАССМОТРЕНО ШМО учителей ЕНН

Гнрихс А.А.

Протокол № 1

от «31» августа 2023 г.

СОГЛАСОВАНО

Заместитель дуректора по УВР

Головина О.В.

Протокол № 1

от «31» августа 2023 г.

Y BEPACIENO Дицентор МВОМ "Авдинская СОШ"

Чернов В.М.

Приказ № 01-04/129 от «31» августа /2023

АДАПТИРОВАННАЯ РАБОЧАЯ ПРОГРАММА

учебный предмет «Информатика» (базовый уровень) для учащихся 9 класса

> Составитель: учитель информатики І квалификационной категории Коломеец Ирина Николаевна

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по информатике и информационным технологиям составлена на основе:

- 1. Федерального компонента государственного стандарта начального общего образования;
- 2. Основной образовательной программы основного общего образования МБОУ «Авдинская СОШ».
 - 3. Рабочая программа ориентирована на использование УМК:
- Учебник Босова, Л. Л. Информатика [Текст]: Учебник для 9 класса/Л. Л. Босова, А. Ю. Босова.
- Рабочая тетрадь : Босова Л.Л. Информатика: рабочая тетрадь для 9 класса в 2 частях. Методическое пособие для учителя: Босова Л.Л., Босова А.Ю Информатика. Методическое пособие для 7-9 классов.

Изучение информатики и информационных технологий в основной школе направлено на достижение следующих целей:

- формирование основ научного мировоззрения в процессе систематизации, теоретического осмысления и обобщения имеющихся и получения новых знаний, умений и способов деятельности в области информатики;
- совершенствование общеучебных и общекультурных навыков работы с информацией, навыков информационного моделирования, исследовательской деятельности и т.д.; развитие навыков самостоятельной учебной деятельности школьников;
- воспитание ответственного и избирательного отношения к информации с учётом правовых и этических аспектов её распространения, стремления к созидательной деятельности и к продолжению образования с применением средств ИКТ.

Задачи:

- овладение умениями работать с различными видами информации с помощью компьютера и других средств информационных и коммуникационных технологий, организовывать собственную информационную деятельность и планировать ее результаты;
- развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;
- воспитание ответственного отношения к информации с учетом правовых и этических аспектов ее распространения; избирательного отношения к полученной информации;

выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, дальнейшем освоении профессий, востребованных на рынке труда.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Информатика — это естественнонаучная дисциплина о закономерности протекания информационных процессов в системах различной природы, а также о методах и средствах их автоматизации.

Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий — одного из наиболее значимых технологических достижений современной цивилизации. Вместе с математикой, физикой, химией, биологией курс информатики закладывает основы естественнонаучного мировоззрения.

Информатика имеет очень большое и все возрастающее число междисциплинарных связей, причем как на уровне понятийного аппарата, так и на уровне инструментария. Многие предметные знания и способы деятельности (включая использование средств ИКТ), освоенные обучающимися на базе информатики способы деятельности, находят применение как в рамках

образовательного процесса при изучении других предметных областей, так и в реальных жизненных ситуациях, становятся значимыми для формирования качеств личности, т. е. ориентированы на формирование метапредметных и личностных результатов. На протяжении всего периода существования школьной информатики в ней накапливался опыт формирования образовательных результатов, которые в настоящее время принято называть современными образовательными результатами.

Одной из основных черт нашего времени является всевозрастающая изменчивость окружающего мира. В этих условиях велика роль фундаментального образования, обеспечивающего профессиональную мобильность человека, готовность его к освоению новых технологий, в том числе, информационных. Необходимость подготовки личности к быстро наступающим переменам в обществе требует развития разнообразных форм мышления, формирования у обучающих умений организации собственной учебной деятельности, их ориентации на развивающую жизненную позицию.

В содержании курса информатики основной школы целесообразно сделать акцент на изучении фундаментальных основ информатики, формировании информационной культуры, развитии алгоритмического мышления, реализовать в полной мере общеобразовательный потенциал этого курса.

Курс информатики основной школы является частью непрерывного курса информатики, который включает в себя также пропедевтический курс в начальной школе и обучение информатике в старших классах (на базовом или профильном уровне). В настоящей программе учтено, что сегодня, в соответствии с Федеральным государственным стандартом начального образования, учащиеся к концу начальной школы должны обладать ИКТ-компетентностью, достаточной для дальнейшего обучения. Далее, в основной школе, начиная с 5-го класса, они закрепляют полученные технические навыки и развивают их в рамках применения при изучении всех предметов. Курс информатики основной школы, опирается на опыт постоянного применения ИКТ, уже имеющийся у учащихся, дает теоретическое осмысление, интерпретацию и обобщение этого опыта.

МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Федеральный базисный учебный (образовательный) план на изучение информатики в 8 классе основной школы отводит 1 учебный час в неделю в течение года, всего 34 часа.

СОДЕРЖАНИЕ КУРСА

Тема 1. Моделирование и формализация (9 часов)

Понятия натурной и информационной моделей

Виды информационных моделей (словесное описание, таблица, график, диаграмма, формула, чертёж, граф, дерево, список и др.) и их назначение. Модели в математике, физике, литературе, биологии и т.д. Использование моделей в практической деятельности. Оценка адекватности модели моделируемому объекту и целям моделирования.

Компьютерное моделирование. Примеры использования компьютерных моделей при решении научно-технических задач.

Реляционные базы данных Основные понятия, типы данных, системы управления базами данных и принципы работы с ними. Ввод и редактирование записей. Поиск, удаление и сортировка данных.

Тема 2. Алгоритмы и элементы программирования. Алгоритмизация и программирование. (8 часов)

Этапы решения задачи на компьютере. Конструирование алгоритмов: разбиение задачи на подзадачи, понятие вспомогательного алгоритма. Вызов вспомогательных алгоритмов. Рекурсия.

Управление, управляющая и управляемая системы, прямая и обратная связь. Управление в живой природе, обществе и технике.

Тема 3. Обработка числовой информации в электронных таблицах. (6 часов)

Электронные таблицы. Использование формул. Относительные, абсолютные и смешанные ссылки. Выполнение расчётов. Построение графиков и диаграмм. Понятие о сортировке (упорядочивании) данных.

Тема 4. Коммуникационные технологии. (10 часов)

Локальные и глобальные компьютерные сети. Интернет. Скорость передачи информации. Пропускная способность канала. Передача информации в современных системах связи.

Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция, сайт. Информационные ресурсы компьютерных сетей: Всемирная паутина, файловые архивы.

Технологии создания сайта. Содержание и структура сайта. Оформление сайта. Размещение сайта в Интернете.

Базовые представления о правовых и этических аспектах использования компьютерных программ и работы в сети Интернет.

Тема 5. Итоговое повторение (1 час)

Кол-во часов Проверочные

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Содержание	Кол-во часов	Проверочные работы (кол-
		во)
Моделирование и формализация	9	1
Алгоритмизация и программирование	8	1
Обработка числовой информации в	6	1
электронных таблицах		1
Коммуникационные технологии	10	1
Итоговое повторение	1	1
ИТОГО	34	5

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества; понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации; ответственное отношение к информации с учетом правовых и этических аспектов ее распространения; развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества; готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в реальных жизненных ситуациях.

Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.
- владение умениями организации собственной учебной деятельности, включающими: целеполагание как постановку учебной задачи на основе соотнесения того, что уже известно, и того, что требуется установить; планирование - определение последовательности промежуточных целей с учетом конечного результата, разбиение задачи на подзадачи, разработка последовательности и структуры действий, необходимых для достижения цели при помощи фиксированного набора средств; прогнозирование – предвосхищение результата; контроль – интерпретация полученного результата, его соотнесение с имеющимися данными с целью установления соответствия или несоответствия (обнаружения ошибки); коррекция – внесение необходимых дополнений и корректив в план действий в случае обнаружения ошибки; оценка - осознание учащимся того, насколько качественно им решена учебно-познавательная задача;
- опыт принятия решений и управления объектами (исполнителями) с помощью составленных для них алгоритмов (программ);
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства.

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений

В соответствии с федеральным государственным образовательным стандартом общего образования основными предметными результатами, формируемыми при изучении информатики в основной школе, являются:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;

- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Планируемые результаты сформулированы к каждому разделу учебной программы. Математические основы информатики

Выпускник научится:

- описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них; использовать термины, описывающие скорость передачи данных, оценивать время передачи данных;
 - кодировать и декодировать тексты по заданной кодовой таблице;
- оперировать понятиями, связанными с передачей данных (источник и приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- определять минимальную длину кодового слова по заданным алфавиту кодируемого текста и кодовому алфавиту (для кодового алфавита из 2, 3 или 4 символов);
- определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода;
- записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичную и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления:
- записывать логические выражения составленные с помощью операций «и», «или», «не» и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;
- определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения;
- использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);
- описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» не обязательно);
- познакомиться с двоичным кодированием текстов и с наиболее употребительными современными кодами;
- использовать основные способы графического представления числовой информации, (графики, диаграммы)

Выпускник получит возможность:

- познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- познакомиться с тем, как информация (данные) представляется в современных компьютерах и робототехнических системах;
- познакомиться с примерами использования графов, деревьев и списков при описании реальных объектов и процессов;
- ознакомиться с влиянием ошибок измерений и вычислений на выполнение алгоритмов управления реальными объектами (на примере учебных автономных роботов);

• узнать о наличии кодов, которые исправляют ошибки искажения, возникающие при передаче информации

Алгоритмы и элементы программирования

Выпускник научится:

- составлять алгоритмы для решения учебных задач различных типов;
- выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков и др.);
- определять наиболее оптимальный способ выражения алгоритма для решения конкретных задач (словесный, графический, с помощью формальных языков);
 - определять результат выполнения заданного алгоритма или его фрагмента;
- использовать термины «исполнитель», «алгоритм», «программа», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;
- выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных, записанные на конкретном язык программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);
- составлять несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных с использованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на выбранном языке программирования; выполнять эти программы на компьютере;
- использовать величины (переменные) различных типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;
- анализировать предложенный алгоритм, например, определять какие результаты возможны при заданном множестве исходных значений;
 - использовать логические значения, операции и выражения с ними;
- записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

Выпускник получит возможность:

- познакомиться с использованием в программах строковых величин и с операциями со строковыми величинами;
 - создавать программы для решения задач, возникающих в процессе учебы и вне ее;
 - познакомиться с задачами обработки данных и алгоритмами их решения;
- познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами (роботы, летательные и космические аппараты, станки, оросительные системы, движущиеся модели и др.);
- познакомиться с учебной средой составления программ управления автономными роботами и разобрать примеры алгоритмов управления, разработанными в этой среде.

Использование программных систем и сервисов

Выпускник научится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);
 - разбираться в иерархической структуре файловой системы;
 - осуществлять поиск файлов средствами операционной системы;
- использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов; построение диаграмм (круговой и столбчатой);
- использовать табличные (реляционные) базы данных, выполнять отбор строк таблицы, удовлетворяющих определенному условию;

- анализировать доменные имена компьютеров и адреса документов в Интернете;
- проводить поиск информации в сети Интернет по запросам с использованием логических операций.

Выпускник овладеет (как результат применения программных систем и интернетсервисов в данном курсе и во всем образовательном процессе):

- навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
 - различными формами представления данных (таблицы, диаграммы, графики и т. д.);
- приемами безопасной организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернет-сервисов и т. п.;
 - основами соблюдения норм информационной этики и права;
- познакомится с программными средствами для работы с аудио-визуальными данными и соответствующим понятийным аппаратом;
 - узнает о дискретном представлении аудио-визуальных данных.

Выпускник получит возможность (в данном курсе и иной учебной деятельности):

- узнать о данных от датчиков, например, датчиков роботизированных устройств;
- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;
- познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами, с методами поиска в Интернете;
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников);
- узнать о том, что в сфере информатики и ИКТ существуют международные и национальные стандарты;
 - узнать о структуре современных компьютеров и назначении их элементов;
 - получить представление об истории и тенденциях развития ИКТ;
 - познакомиться с примерами использования ИКТ в современном мире;
- получить представления о роботизированных устройствах и их использовании на производстве и в научных исследованиях.
 - осознано подходить к выбору ИКТ средств для своих учебных и иных целей;
 - узнать о физических ограничениях на значения характеристик компьютера.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Дата проведения № урока		Тема урока	Количество часов	Примечание
	План	Фактически			
			Моделирование и формализация	9	
1.			Цели изучения курса информатики и ИКТ. Техника безопасности и организация рабочего места.	1	
2.			Моделирование как метод познания	1	
3.			Знаковые модели	1	
4.			Графические модели	1	
5.			Табличные модели	1	
6.			База данных как модель предметной области. Реляционные базы данных.	1	
7.			Система управления базами данных	1	
8.			Создание базы данных. Запросы на выборку данных	1	
9.			Контрольная работа по теме «Моделирование и формализация».	1	
			Алгоритмизация и программирование	8	
10.			Решение задач на компьютере	1	
11.			Одномерные массивы целых чисел. Описание, заполнение, вывод массива.	1	
12.			Вычисление суммы элементов массива	1	
13.			Последовательный поиск в массиве	1	
14.			Сортировка массива	1	
15.			Конструирование алгоритмов	1	
16.			Запись вспомогательных алгоритмов на языке Паскаль	1	
17.			Контрольная работа по теме «Алгоритмизация и программирование».	1	
			Обработка числовой информации	6	
18.			Интерфейс электронных таблиц. Данные в ячейках таблицы. Основные режимы работы.	1	
19.			Организация вычислений. Относительные, абсолютные и смешанные ссылки.	1	
20.			Встроенные функции. Логические функции.	1	
21.			Сортировка и поиск данных.	1	
22.			Построение диаграмм и графиков.	1	
23.			Контрольная работа по теме «Обработка числовой информации в	1	

	электронных таблицах».		
	Коммуникационные технологии	10	
24.	Локальные и глобальные компьютерные сети	1	
25.	Как устроен Интернет. ІР-адрес компьютера	1	
26.	Доменная система имён. Протоколы передачи данных.	1	
27.	Всемирная паутина. Файловые архивы.	1	
28.	Электронная почта. Сетевое коллективное взаимодействие. Сетевой этикет.	1	
29.	Технологии создания сайта.	1	
30.	Содержание и структура сайта.	1	
31.	Оформление сайта.	1	
32.	Размещение сайта в Интернете.	1	
33.	Промежуточная аттестация. Контрольная работа.	1	
	Итоговое повторение	1	
34.	Основные понятия курса.	1	

ОПИСАНИЕ УЧЕБНО-МЕТОДИЧЕСКОГО И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Список учебно-методической литературы.

- Учебник Босова, Л. Л. Информатика [Текст]: Учебник для 9 класса/Л. Л. Босова, А. Ю. Босова.
- Рабочая тетрадь : Босова Л.Л. Информатика: рабочая тетрадь для 9 класса в 2 частях.
- Методическое пособие для учителя: Босова Л.Л., Босова А.Ю Информатика. Методическое пособие для 7-9 классов.

Дополнительная литература и интернет-ресурсы:

- 1. Босова Л.Л. Набор цифровых образовательных ресурсов. Информатика 7-9.
- 2. Ресурсы Единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru)
- 3. Босова Л.Л., Босова А.Ю. Электронное приложение к учебнику «Информатика.9 класс».
- 4. Контрольно-измерительные материалы так же находятся на сайте http://metodist.lbz.ru/authors/informatika/3/
- 5. Сайт методической поддержки УМК: Материалы авторской мастерской Босовой Л.Л. (www.metodist.lbz.ru). Электронные приложения к учебникам включают:
- методические материалы для учителя;
- файлы-заготовки (тексты, изображения), необходимые для выполнения работ компьютерного практикума;
- текстовые файлы с дидактическими материалами (для печати);
- дополнительные материалы для чтения;
- мультимедийные презентации ко всем параграфам каждого из учебников;
- интерактивные тесты.

Критерии и нормы оценки

- 1. Содержание и объем материала, подлежащего проверке, определяется программой и учебником. При проверке усвоения материала необходимо выявлять полноту, прочность усвоения учащимися теории и умение применять ее на практике в знакомых и незнакомых ситуациях.
- 2. Основными формами проверки ЗУН учащихся по информатике являются устный опрос, письменная контрольная работа, самостоятельная работа, тестирование, практическая работа на ЭВМ и зачеты (в старших классах).
- 3. При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися. Среди погрешностей выделяются ошибки и недочеты.
- Ошибкой считается погрешность, если она свидетельствует о том, что ученик не овладел основными знаниями и (или) умениями, указанными в программе.
- Недочетами считаются погрешности, которые не привели к искажению смысла, полученного учеником задания или способа его выполнения, например, неаккуратная запись, небрежное выполнение блок-схемы и т. п.
- 4. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
- Ответ за теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически и логически грамотны и отличаются последовательностью и аккуратностью.
- Решение задачи по программированию считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнен алгоритм решения, решение записано последовательно, аккуратно и синтаксически верно по правилам какого-либо языка или системы программирования.
- Практическая работа на ЭВМ считается безупречной, если учащийся самостоятельно или с незначительной помощью учителя выполнил все этапы решения задачи на ЭВМ, и был получен верный ответ или иное требуемое представление задания.
- 5. Оценка ответа учащегося при устном и письменном опросах, а также при самостоятельной работе на ЭВМ, проводится по пятибалльной системе, т.е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).
- 6.Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком уровне владения информационными технологиями учащимся, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им основных заданий.

ОЦЕНКА ОТВЕТОВ УЧАЩИХСЯ

Для устных ответов определяются следующие критерии оценок:

- оценка «5» выставляется, если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком в определенной логической последовательности, точно используя математическую и специализированную терминологию и символику;
- правильно выполнил графическое изображение алгоритма и иные чертежи и графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно без наводящих вопросов учителя.
- оценка «4» выставляется, если ответ имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие логического и информационного содержания ответа;

- нет определенной логической последовательности, неточно используется математическая и специализированная терминология и символика;
- допущены один-два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию или вопросу учителя.

- оценка «3» выставляется, если:

- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса, имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, чертежах, блок-схем и выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме,
- при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

- оценка «2» выставляется, если:

- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала,
- допущены ошибки в определении понятий, при использовании терминологии, в чертежах, блок-схем и иных выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

- оценка «1» выставляется, если:

- ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

Оценка самостоятельных и проверочных работ по теоретическому курсу

Оценка "5" ставится в следующем случае:

- работа выполнена полностью;
- при решении задач сделан перевод единиц всех физических величин в "СИ", все необходимые данные занесены в условие, правильно выполнены чертежи, схемы, графики, рисунки, сопутствующие решению задач, сделана проверка по наименованиям, правильно записаны исходные формулы, записана формула для конечного расчета, проведены математические расчеты и дан полный ответ;
- на качественные и теоретические вопросы дан полный, исчерпывающий ответ литературным языком с соблюдением технической терминологии в определенной логической последовательности, учащийся приводит новые примеры, устанавливает связь между изучаемым и ранее изученным материалом по курсу информатики, а также с материалом, усвоенным при изучении других предметов, умеет применить знания в новой ситуации;
- учащийся обнаруживает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения.

Оценка "4" ставится в следующем случае:

- работа выполнена полностью или не менее чем на 80 % от объема задания, но в ней имеются недочеты и несущественные ошибки: правильно записаны исходные формулы, но не записана формула для конечного расчета; ответ приведен в других единицах измерения.
- ответ на качественные и теоретические вопросы удовлетворяет вышеперечисленным требованиям, но содержит неточности в изложении фактов, определений, понятий, объяснении взаимосвязей, выводах и решении задач;
- учащийся испытывает трудности в применении знаний в новой ситуации, не в достаточной мере использует связи с ранее изученным материалом и с материалом, усвоенным при изучении других предметов.

Оценка "3" ставится в следующем случае:

- работа выполнена в основном верно (объем выполненной части составляет не менее 2/3 от общего объема), но допущены существенные неточности; пропущены промежуточные расчеты.
- учащийся обнаруживает понимание учебного материала при недостаточной полноте усвоения понятий и закономерностей;
- умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении качественных задач и сложных количественных задач, требующих преобразования формул.

Оценка "2" ставится в следующем случае:

- работа в основном не выполнена (объем выполненной части менее 2/3 от общего объема задания);
- учащийся показывает незнание основных понятий, непонимание изученных закономерностей и взаимосвязей, не умеет решать количественные и качественные задачи.

Оценка "1" ставится в следующем случае: работа полностью не выполнена.

Для письменных работ, учащихся по алгоритмизации и программированию:

- оценка «5» ставится, если:

- работа выполнена полностью;
- в графическом изображении алгоритма (блок-схеме), в теоретических выкладках решения нет пробелов и ошибок;
- в тексте программы нет синтаксических ошибок (возможны одна-две различные неточности, описки, не являющиеся следствием незнания или непонимания учебного материала).

- оценка «4» ставится, если:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущена одна ошибка или два-три недочета в чертежах, выкладках, чертежах блок-схем или тексте программы.

- оценка «3» ставится, если:

- допущены более одной ошибки или двух-трех недочетов в выкладках, чертежах блок-схем или программе, но учащийся владеет обязательными умениями по проверяемой теме.

- оценка «2» ставится, если:

- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

- оценка «1» ставится, если:

- работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме.

Практическая работа на ЭВМ оценивается следующим образом:

- оценка «5» ставится, если:

- учащийся самостоятельно выполнил все этапы решения задач на ЭВМ;
- работа выполнена полностью и получен верный ответ или иное требуемое представление результата работы;

- оценка «4» ставится, если:

- работа выполнена полностью, но при выполнении обнаружилось недостаточное владение навыками работы с ЭВМ в рамках поставленной задачи;
- правильно выполнена большая часть работы (свыше 85 %), допущено не более трех ошибок;
- работа выполнена полностью, но использованы наименее оптимальные подходы к решению поставленной задачи.

- оценка «3» ставится, если:

- работа выполнена не полностью, допущено более трех ошибок, но учащийся владеет основными навыками работы на ЭВМ, требуемыми для решения поставленной задачи.

- оценка «2» ставится, если:

- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями, умениями и навыками работы на ЭВМ или значительная часть работы выполнена не самостоятельно.
- оценка «1» ставится, если:
- работа показала полное отсутствие у учащихся обязательных знаний и навыков практической работы на ЭВМ по проверяемой теме.

Тест оценивается следующим образом:

- «5» 86-100% правильных ответов на вопросы;
- «4» 71-85% правильных ответов на вопросы;
- «3» 51-70% правильных ответов на вопросы;
- «2» 0-50% правильных ответов на вопросы.